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The linear stability of an extensively modulated cylindrical Couette flow is investigated 
in the finite-gap range. A closed form analytic solution is obtained for the basic un- 
steady flow after modulation is introduced through the boundary conditions. The 
general linear perturbation equations for three-dimensional disturbances are then 
derived and subsequently solved using the Galerkin method with the stability analysed 
by the Floquet theory. Modulation is found to destabilize the flow in most cases and 
results compare very favourably with the ones obtained experimentally. Stabilization 
is possible only for some cases of outer cylinder modulation. 

1. Introduction 
The stability of time-dependent flows has recently attracted the attention of a 

number of investigators. The linear and nonlinear theories were employed with various 
degrees of success. A rather extensive review was recently published by Davis (1976). 
I n  the current paper we will employ the linear theory to study the stability of time- 
dependent fluid flow between two concentric cylinders. 

A common geophysical fluid dynamic laboratory experiment involves fluid flow 
between two rotating concentric cylinders (often referred to as circular Couette or 
Taylor flow). The experimental as well as the theoretical work on this type of flow 
has been used to model jet streams, fronts and atmospheric waves with imbedded 
cyclones (see review by Hide 1969). Recently Clever, Busse & Kelly (1977) applied the 
Taylor instability problem in their study of atmospheric convective rolls in the 
planetary bounda,ry layer, which give rise to cloud-street formations. In  industrial 
applications the study of circular Couette flow is important in lubrication mechanics 
and viscosity measurements. 

Many of the flows mentioned above as well as most flows occurring in nature are 
unsteady. Of all time-dependent flows and processes observed either in nature or in 
the laboratory, periodic or semi-periodic systems constitute the largest and perhaps 
the most important subset. Some fascinating examples occur in biochemical systems. 
Spatial and temporal oscillations of concentrations accompanied by dramatic colour 
changes have been observed in the so called ' Belousov-Zhabotinskii ' reaction. This 
chemical reaction is essentially the oxidation of malonic acid by bromate in the pre- 
sence of a cerium catalyst. I ts  importance is that it mirrors biological oscillators, 
which are believed to perform intercellular communication in living tissues (see review 
by Othmer 1976). Another important example from the biological sciences is found 
in the study of the stability of the flow in the aorta. The two major phenomena in this 
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connection are discussed by Seminara & Hall (1976), one being the oscillatory pressure 
gradient driving the blood flow, the second being the curvature in the pipe which 
increases the prospect of centrifugal instability. I n  the study of global circulation 
patterns, periodic growth and decay of the amplitude of baroclinic waves has been 
observed (see Pedlosky 1972). An important industrial application of periodic flow is 
the high speed non-impact printer, which depends on a sinusoidally excited jet stream 
to form ink droplets. There are numerous other examples but for the sake of brevity, 
we will confine ourselves to the ones mentioned above. 

In  this work we studied the flow between two concentric cylinders whose walls 
located a t  r = R, and r = R, are rotating with constant angular velocities Q, and Q,, 
respectively, and with modulation performed on both of them. I n  addition, we also 
examined modulation performed on stationary cylinders (zero-mean case). No narrow- 
gap limit is assumed throughout this work. 

A closed-form analytic solution is derived for the basic unsteady flow in terms of 
modified Bessel functions after the governing equations in the given domain are 
solved satisfying the modulated boundary conditions. 

Next, the linear perturbation equations governing disturbances in modulated flow 
are derived for the general three-dimensional case which includes both axial and 
azimuthal disturbances. After introducing normal modes the two dependent variables 
u and v are expanded into Galerkin series with time-dependent coefficients. The 
remaining spatial dependence is then absorbed into coefficients via integration over 
the x domain, while the temporal dependence is cast into a first-order system of 
ordinary differential equations in time. The stability of this system is then analysed by 
employing the Floquet theory. Our numerical scheme was adopted to  work for different 
values of the modulation amplitudes and frequencies. Stability limits are obtained as 
a converging sequence for an increasing order of Galerkin expansions. For the zero- 
mean flow problem (modulation in the stationary case) we found that higher-order 
Galerkin expansions are needed a t  higher frequencies. I n  the narrow gap limit for 
zero-mean flows, our results show some qualitative agreement with those of Riley & 
Laurence (1976) but no jump discontinuities were found in the critical wavenumber 
and frequency plane (see the appendix). For non-zero-mean flows (again in the narrow- 
gap limit) our findings coincide with those of Hall (1975) but agreement with Riley & 
Laurence is seen only for small amplitudes of modulation. 

A close correlation between Thompson’s ( 1968) experimental observations and the 
results of the present investigation constitutes an important step in enhancing their 
significance in atmospheric fluid dynamic situations. A detailed derivation and dis- 
cussion of the present results can be found in Tustaniwskyj (1979). 

2. Modulated basic flow and linear perturbation formulation 
The equations governing the basic flow are 

au - 1  
-+(u.V)u =-Vp+vV~u, 
at P 

and v . u  = 0. (2) 
Here we utilize cylindrical polar co-ordinates ( r ,  8, z ) ,  where the z axis is the common 
axis of the cylinders located a t  r = R,  and r = R,, with R, < R,. 
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The basic flow is azimuthal, and is generated by the motion of one or both the 
cylinders. The velocity vector of this basic flow thus has the form 

u = (0 ,  V ( r ,  t ) ,  0). (3) 

We restrict ourselves to basic modulated flows which are time periodic with period 
2nlw. I n  this case V ( r ,  t )  satisfies 

(4) 

with boundary conditions 
V(Rl , t )  = R,(R,+e ,~~swt) ,  

V(R2 , t )  = R,(R,+e,~~swt) .  (6) 

It is convenient to decompose the velocity field V ( r ,  t )  into steady and periodic parts 

(7) V ( r ,  t )  = v,(r) + yJ., t ) ,  

obtained by solving (4)-(6). The steady part is 

= A r + B / r ,  (8) 
where 

For the time periodic part we get 

V, = Re [(el (sl I, ((:) ' r )  - F1 Ii, (($) j r ) )  

where I, and K ,  are modified Bessel functions and 

iw t 
Sl = R , K ,  ((y) R P ) / A ,  S2 = R,Kl 

Tl = &Il ( ( y )  R 2 ) / A ,  T2 = R211 ((y) R l ) l h ,  

A = 4 ((y 4) K ,  ((y) iw t R,) - 4  ((3".p) K ,  ( ( y )  iw f R1) 

iw f iw f 

with 

Associated with the basic velocity field (7) is a pressure field P(r,  t )  which is given by 

aP VZ _ -  
ar - 

The equations governing infinitesimal disturbances of the modulated flow (7) are 
obtained by substituting 

u = u ( r , O , z , t ) ,  v =  V ( r , t ) + v ( r , O , z , t ) ,  

w = w(r, O , z ,  t ) ,  p = P(r,  t )  + p @ ,  892, t ) ,  
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into (1) and ( 2 )  and neglecting second- and higher-order terms. The disturbances u, V ,  

I P  and p can be Fourier analysed with respect to 8 and z :  

u (r ,  8, z ,  t )  = &(r ,  t )  cos kz cos n8 + zi(r, t )  cos kz sin no, 

v(r ,  8, x ,  t )  = 8(r ,  t )  cos kz cos n8 + 6(r ,  t )  cos kx sin no, 

I P ( Y .  8, z, t )  = 8 ( r ,  t )  sin kz cos nO + C?(r, t )  sin kzsin no, 

p ( r , O , z , t )  = f j ( r , t )cos  k zcosn8+~(r , t ) coskxs inn8 .  

Substituting (1  1 )  into the linear perturbation equations and after elimination of @, @, 
13, 6. from the resulting equations and the introduction of non-diniensional variables 

1 (11) 

we obta 

where 

z = ( r  - R,)/d - 4 and r = o t ,  

tin the governing equations for 4, ti, 8, ?j, 

dVna2 d2a2VC ndDV zi ++*D(;))----U+;- a7 P +--(-+Du) V P P  

(DO- ;) 
Ld 2nZ( i2) 2~~ 

=L?LL&--+-  D&+- +-t?+nDL, 
P2 P3 

n2dDVv n2dV 

d da2n da2 
+-a2DV&+-- V-6+-- Vii 

V V P  V P  

a2n2 2na2 n 
- - ~ ~ ~ L - 6 - - ^ u + - z i - ~ L ,  

P2 P2 

d d a2n d a 2  
+-a2DVzi--- V-6+ -- V T ~  

V V P  v P2 

wd2 
I' ' 

d = R 2 - R , ,  v = - a = kd, 

a 
ax D = - ,  P =  s+&-+x,, R x, = 
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These equations are subject to t h e  boundary conditions 

f i , = & = n Q = D & , = $ = $ = O  at x=_+' 2 '  

23 

(13) 

3. Stability analysis and numerical procedure 
We first seek a solution to the general linear perturbation equations (12), (13) where 

three-dimensional disturbances (n + 0, k + 0) are allowed. The perturbation variables 
f i ,  i i ,  6,6 are expanded into a Calerkin series 

and 
sin h ((,,, x + 4in2n) - sin (6, x + Qmn) 

ulil(x) = sinh a(<, + imn) sin + mn) ' 
where (,,, are consecutive positive roots of 

tanh = ( -  I), tan $clIl, 
constitute complete orthonormal sets and are solutions of 

D2v, + W L ~ ~ ~ U ,  = 0, unL = 0 at x +_ 4, 

D4u,, = [:llunl, u, = Du, = 0 a t  x = & 6, respectively. 
and 

Substituting ( 14) into the linear perturbation equations yields 

,11 AI 

111 = 1 IIL= 1 
C C,nLu,+n C & D E ]  

1 A1 1 JI 

gv n 1 =  1 PW?ll = 1 gnr=1 g m = 1  
( 1 7 )  

d 31 
m rn _ -  - a 5 E CD +- c A.,Y~~,+- c r,c,+- c o,B,, 

171 

111 = 1 1?1= 1 

d ;TI d 31 1 Af 1 $1 

0-v 111 = 1 [Tv llb: 1 0-n1=1 U'?n=l 
- - -- C Cn,@)m+- C B,y,,+- E I'm',-- C @7nAm? (18) 

?)I= $ 1 A7n[a2+$]u7,1- . 
? / L =  5 1 P E["+Dum]l?, P 

(19) 
d M d Af 1 - 1 4 1  

=-  C Gnyn1-- C ~ , ~ 7 n + - 4 n % 1 - -  C XmE,, 
0-V nh= 1 ~v l lL= l  fl 0-n i= l  

J1 . 

(20) 
d JI d 1 211 1 

0-v 111: 1 0-V ?I&= 1 g l I l = l  
=- C 'in'ni+- C Amnin+- C Bm%+~xmcm, 
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where 

2a2 Vvm n2D Vv, + 
plum - 71, P2 y,==-.- + 

P 

Next we multiply (17) ,  (18) ,  (19) ,  (20) by ul, iu,, v, and iq, respectively, and integrate 
over the range ( - 4,s) to get 2M sets of complex equations which can be written in 
the form 

Cliqi = Dij (7)q j ,  i , j  = 1,2,3, ...) 2 M ,  

where q1 = A ,  + iB,, Q,lf+l = Cl+ iE1, 
q2 = A2+iB2, qnl+2 = C2+iE,, etc.; 

with 

R + i X  I T + i P  
_ _ _ _ _ _ _ I  _ _ _ _ _ _ _  

K - i Q  Z- iH 

and 
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Multiplying (21) by the inverse of C, the equations are uncoupled yielding 

where 
a, = Dij(T)qj, i , j  = 1 ,2 ,3 ,  ..., 2M, 

D = C-lD'. 

Our problem is now reduced to analysing the stability of the system (22). This will be 
accomplished using the classical Floqueb theory and numerical methods to  be 

(23) 
described next. Let 

be a solution of (22) which satisfied the initial conditions 

q p  = Sin, (24) 

q p ( 7 )  = col [q1",(7), . . . , qg$(7)], 

with n = 1,2,  . . . , 2M.  The 2M linearly independent qp)(  2n), obtained by integrating 
(22), are arranged in a 2M x 2M matrix P. The eigenvalues A,, . . . , of the matrix P 
are the characteristic multipliers of (22) with the characteristic exponentsp,, defined by 

A, = t2n/+. 

Ordering the characteristic exponents 

Re (P1) 2 Re (P2) 2 . . . 2 Re (P231) 
we find the system to be stable if Re (p,) < 0, while Re (p,) = 0 defines a stability 
boundary and corresponds to one periodic solution. 

Our numerical integration technique consists of a forward integration scheme in 
the complex domain coupled with a root finder method for determining the stability 
limits as eigenvalues. 

All numerical work was performed with double precision on the Wayne State 
University Computing Center's Amdahl 470 V-6 computer system. Complex Bessel 
functions were evaluated using small and large argument polynomial expansions (see 
Abramowitz & Stegun 1972). An adaptive Romberg extrapolation procedure was used 
to obtain the coefficients of the Dij (7)  matrix. The relative error of these coefficients 
was estimated to be less than 10-4. Forward integration in time had to  be performed 
using an incremental modal analysis technique, since the system (22) had proved to  
be stiff. I n  this procedure we assume that matrix Di j  remains constant over the time 
interval 7 to  r + A7. Here we evaluate the eigenvalues and eigenvectors of matrix D i j  
a t  time 7 ,  transform co-ordinates qi(7) to  modal co-ordinates q:(7), integrate in the 
modal domain to obtain qt(7 + A7), and then transform it back to qi(7 + A7). We found 
that with this integration procedure our stability limit would converge to four signifi- 
cant digits when a time step of 2n/30 was chosen. For zero-mean flows, it is necessary 
to integrate only from 7 = 0 to 7 = n, owing to a symmetry property of equations (22) 
(see Yih & Li 1972; von Kerczek & Davis 1974). The advantages of the above numerical 
procedure is that all 2M sets of equations can be simultaneously integrated and owing 
to its implicit nature, numerical stability is guaranteed. Characteristic multipliers A, 
of matrix P were found using subroutine EIGZC from the IMSL (International 
Mathematics and Statistics Libraries) package. 

To find the critical parameters 8, and a,, the regula falsi and secant root finders 
were employed along with an interval segmenting minimum finder. The critical values 
satisfy the relations 

\Re (p(v,  a,,R,JWI < 
8, = A(a,) = min ( R ( a ) ) ,  
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Y 
FIGURE 1 .  Variation of critical stability parameter R" = (el  R,d /v )Jd  with the modulation 

frequency y = [od2/2v]4 for 0, = 0, = E, = O . * ,  gap size 13 = 0-0444; [3, d = 0.444. 

2.5 
1 2 3 4 5 6 7 8 9 1 0  

Y 
FIGURE 2. Variation of critical wave number a, with the modulation 

frequency y = [wd2/2vl* for 0, = a, = E, = 0. 

where M ,  and 6 were held fixed during the stability limit search. R was found accu- 
rately to four significant digits, while a, can be assumed accurate to  the second decimal 
place. The Galerkin order M needed for convergence of the stability problem varied 
for different cases (see appendix). This point will be further elaborated in the discussion 
of the results. 

The most time consuming (and therefore most expensive) part of this work is the 
calculation of the Galerkin coefficients because of the required many evaluations of 
Bessel functions. 
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4. Results and discussion 
Since in many cases the axisymmetric two-dimensiond disturbances (n = 0,  k =I= 0 )  

prove to  be the critical ones, we will present these results first and compare them with 
existing, theoretical and experimental ones in the literature. Results for the two- 
dimensional case are summarized in tables 1 and 2 and figures 1-9 while the ones for 
the general three-dimensional non-axisymmetric case (n + 0,  k + 0) are shown in 
tables 3 and 4 (comparisons) and figures 10-15. 

4.1. Flows with zero mean rotation subjected to axisymmetric disturbances 
(n = 0, k + 0) 

We will now consider four cases of modulated Taylor flow about a zero mean 
(R, = R, -- 0): 

(a )  modulation of the inner cylinder only (el .t. 0, e2 = 0); 
( b )  modulation of the outer cylinder only (el = 0, 8, =I= 0); 
( c )  modulation of both cylinders with equal amplitude in the same direction 

( d )  modulation of both cylinders with equal amplitude in opposite directions 

Results for the inner cylinder modulation are presented in figures 1 and 2. We took 
R, = 6.0275 cm (chosen to compare our results with other investigations) and set 
v = 1, where R, and v are the inner radius and kinematic viscosity, respectively. Here 
a,, the critical axial wavenumber, corresponds to  the minimum Taylor number 
i? = ( e l R l d / v ) J S ,  where 6 = d/R, .  We will limit our studies to  two values for S, 
0.0444 and 0.444, the former for purposes of comparison with other investigations and 
the latter as a convenient wide-gap value. The non-dimensional frequency parameter 
y = (wd2/2u)# (equivalent Stokes-layer thickness) was varied over a reasonable range 
from 1.0 to  6.0. The Galerkin series expansion order M needed for convergence was 
found to be higher for larger values of y ,  but for y < 4, M = 3 was found to be adequate. 
Convergence was assumed when fi corresponding to  order M was within 2 yo of the 
one corresponding to  order M + 1 (see appendix), 

(el/eZ = 1.0); and 

(E1/EZ = - 1.0). 

The two curves in figure 1 represent two different gap sizes, 0.0444 and 0.444. 
Although the larger gap has a higher critical Taylor number, the qualitative behaviour 
of the two curves is identical. For y + 0 the critical Taylor number fi approaches 
fi, (the steady-flow stability limit), while it increases monotonically for y -+ a. 
This behaviour occurs because at higher frequencies the magnitude of velocity de- 
creases rapidly with distance away from the inner cylinder wall thus becoming essen- 
tially only a boundary-layer effect. The effect of gap size on a, is almost negligible. 
I n  figure 2 we plotted a, versus y .  As y -+ 0,  a, again approaches the limiting value for 
steady flow, whereas for y + a it increases monotonically with y. Both fi and a, 
were found to be smooth continuous functions of y. 

Thompson (1968) solved the zero mean inner cylinder modulation problem using 
finite differences and then performed laboratory experiments for verification, In  his 

2 F L M  I08 



28 S .  Carmi and J .  I .  Tustaniuwkyj 

-Y 

&"~GURE 4. Comparison of current results with other investigations for Cl, = R, = e2 = 0 and 
gap size 6 = 0.0444 (i? = ( e ,R ld /v ) , / 6 ,  y = [ud2 /2v ] t ) :  , our results; % , Thompson's 
theoretical results; x , Thompson's experimental data; - - - , results from Riley & Laurence 
for 6 --f 0. 

lr 9 r/8 5 r / 4  1 1  r/8 

) 
[ 

n/2  

3 */2 13  r/8 I nl4 15 r/8 

FIGURE 4. Evolution of tho basic velocity profile over one period for gap size 6 = 0.0444, 
frequency y = 1.5, and Cl, = Q2 = t, = 0. x 's denote points where D * V + 0 and V / r  remains 
finite. 

theoretical and experimental investigation he took R, = 6.0275 cm and 6 = 0.0444. 
Riley & Laurence (1976) solved the same problem in the small-gap approximation 
(neglecting terms of order 6) and used the Galerkin method along with the Floquet 
theory. Figure 3 shows a comparison of our results with the ones obtained by the 
above investigators. The solid line represents the lower curve of figure 1, while the 
x 's are points at which Thompson experimentally observed instability through flow 
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200 

E 11 110 

-/ 

FIGURE 5. Zero mean modulation wit,h gap size S = 0.444. i? = (e2 R 2 d / v )  JS for c2 + 0 and 
= 0, otherwise R = ( e l R l d / v ) J S .  X ,  cl/c2 = 1.0; D, €2 = 0;  0 ,  €1 = 0; t 9 &I/&, = - 1.0. 

Y 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
1.50 
1.75 
2.00 
3.00 
4.00 
5.00 
1-00 
1.50 
2.00 
3.00 
4.00 
5.00 
2.00 
2.25 
2.50 
3.00 
4.00 
5.00 

M 

4 
4 
4 
4 
4 
6 
3 
3 
4 
4 
4 
4 
3 
3 
3 
3 
3 
4 
3 
3 
3 
3 
3 
4 

a, 

3.12 
3.18 
3.40 
3.82 
4.34 
4.91 
3.57 
3.08 
3.13 
3.29 
3.74 
4.35 
3.37 
3.10 
3.12 
3.12 
3.22 
4.10 
4.21 
3.41 
3.64 
3.82 
4.05 
4.24 

w 
59.42 
62.38 
79.08 

105.6 
139.9 
178.0 
151.6 (h) 
88.13 
72.16 
80.99 

114.3 
1 54.2 
79.01 (h) 
33.74 
28.17 
37.23 
65.91 

113.1 
169.5 (h) 
110.3 
88.51 
78.51 
80.45 
97.29 

(h) denotes half frequency response. 

TABLE 1. Modulation about a zero mean (al = R, = 0) for gap size 8 = 0.444. 

2-2 
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visualization. Thompson’s theoretical results are depicted as * ’s and the broken line 
is the stability boundary obtained by Riley & Laurence. Excellent agreement is 
found between our results and Thompson’s theoretical ones, while Riley & Laurence’s 
figures are somewhat higher. The discrepancy with the latter can be partially explained 
by their approximation of the term D * V + V/,8 by D * V in (12). This approximation, 
although valid for the steady state, cannot be justified for the unsteady case. To 
illustrate this, one can look at the evolution of the velocity profile over one period for 
y = 1.5, as shown in figure 4. This is exactly the frequency a t  which Riley & Laurence 
predict a discontinuity in a, along with a derivative discontinuity for 8. The x ’s 
in figure 4 indicate points on the velocity profile where the value D* V approaches 
zero while V//3 remains finite. Further discussion on this matter can be found in the 
appendix. 

For cases ( b ) ,  ( c )  and ( d ) ,  listed on page 27, we found a considerable similarity in 
behaviour which is, however, markedly different from that of inner cylinder modulation 
(see figure 5 and table 1) .  The critical Taylor number is defined as before except for 
the cases with outer modulation only, where a = (s,R,d/v)Jb’. We found that a 
reached a minimum in the range y = 2-0-3-0 and approaches infinity as y -+ 0 or 
y --f 00. For small y the response is no longer synchronous but a t  half the frequency 
of the boundary oscillation. Table 1 and figure 5 illustrate the functional relationship 
between 2 and y for all 4 cases with 6 = 0.444. Modulation of both cylinders in phase 
is the most destabilizing, while out of phase is the least. 

The mechanism of instability for the above mentioned cases can partially be ex- 
plained by examining the time evolution of a velocity profile over one period of zero- 
mean rotation of the outer cylinder. At some time during the cycle, Rayleigh’s (1920) 
inviscid criterion is clearly violated and when the amplitude is sufficiently large, the 
viscous forces will be overtaken and centrifugal instability will occur. This result is 
definitely different than the one obtained for steady rotation of the outer cylinder 
only, where the angular momentum increases monotonically outward, and the flow 
is therefore stable by Rayleigh’s criterion. 

4.2. Flows with non-zero mean rotation subjected to axisymmetric disturbances 
(n = 0, k + 0 )  

The results for the non-zero mean modulation problem are given in figures 6-8 and 
table 2, In these cases, the steady component of the flow had the inner cylinder rotating, 
while the outer remained a t  rest (a, 4 0 ,  SZ, = 0) .  Figures 6 and 7 show the relation- 
ship of & = (a, R, d / v )  Jb’and a,, respectively, versus y for amplitude ratio EJR, = 5-0. 
Again, as in the zero-mean case, 8 is higher for 6 = 0.444 than for 6 = 0.0444. The 
results for sJR, = 0.5, c2 = 0 and 6 = 0.444 are given in table 2 and figure 8. I n  
general we found that the qualitative behaviour of 8 and a, versus y is independent 
of S and the amplitude ratio. In  the limit as y + 0 ,  8 approaches 8,sZ,/(SZ,+s,), 
where 8, i s  the stability limit for Ql 4 0,  el = 0 (steady rotation of the inner cylinder). 
We found 8 to be less than 8, for all y ;  however, 8 approaches 8, asymptotically as 
y -+ 00. For y + 0 or y + 00 we found a, to equal a,, (critical wavenumber for steady 
flow), while reaching a maximum near y = 7.0. Both 8 and a, are smooth continuous 
functions of y and the response is synchronous everywhere. 

Hall (1975) and Riley & Laurence (1976) have investigated theoretically the non- 
zero-mean modulation of the inner cylinder. Hall solved this problem for the small- 
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3.60 

0, 3.4s 

3.30 

3.15 

31 

- 

- 
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- 
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I I I I I I I I I I 
0 1 2  3 4 s 6 7 a 9 10 

Y 
FIGURE 6. Critical parameters = (C l lR1d /v )JS  versus frequency y for a, = eZ = 0 and 
e,/R, = 5.0: m, gap size S = 0.444; t , 6 = 0.0444; x , results from Riley & Laurence for 
s + 0 .  

3.90 r 

3.00 
o 1.2s 2.50 3.1s 5.00 6.25 1-50 8.15 10.00 

Y 
FIGURE 7.  Critical wave number a, versus frequency y for a, = E, = 0 

and cl/n1 = 5.0: 13, 6 = 0.444; *, S = 0.0444. 
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Y 
1 .o 
2.0 
4.0 
5.0 
6.0 
8.0 

10.0 
1-0 
2.0 
4.0 
5.0 
6.0 
8.0 

10.0 
1 -0 
2.0 
4.0 
5.0 
6.0 
8.0 

10.0 
1 so 
2.0 
3.0 
4-0 
6.0 
7 -0 
8.0 

10.0 

M 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

a, 

3.13 
3.15 
3.21 
3-22 
3.22 
3.19 
3.17 
3.12 
3.12 
3.1 1 
3.10 
3-10 
3.11 
3.12 
3.12 
3.12 
3-13 
3-14 
3-15 
3.1 6 
3.15 
3.22 
3.12 
3.13 
3.13 
3.09 
3.07 
3.08 
3.10 

a 
36.42 
36.89 
41-30 
43.88 
46.25 
49.61 
51.26 
48.91 
34.51 
40.50 
44.73 
48.08 
51-61 
52.47 
33.92 
27.1 1 
34.73 
39.58 
43.66 
49.96 
51-26 
45.62 
47.32 
45.05 
47.75 
52.75 
53.92 
54.19 
53.65 

Type 

e,/R, = 0.5, e2 = 0 
e1/R1 = 0.5, ez = 0 
e,/R, = 0.5, e2 = 0 
e1/R, = 0.5, e2 = 0 
e,/R, = 0.5, e2 = 0 
e1/R1 = 0.5, E2 = 0 
el/al = 0.5, ez = 0 
e2/R1 = 0.5, el = 0 
e2/R, = 0.5, el = 0 
e2/Rl = 0.5, el = 0 
e2/Rl = 0.5, = 0 
ez/R, = 0.5, 6 ,  = 0 
e2/Rl = 0.5, el = 0 
E,/R, = 0.5, el = 0 
e1/Rl = 0.5, e1/e2 = 1.0 
el/R, = 0.5, e1/e2 = 1.0 
el/Rl = 0-5, e1/e2 = 1.0 
e1/R, = 0.5, e1/e2 = 1.0 
E,/R, = 0.5, e1/e2 = 1.0 
e1/R, = 0.5, E , / E ,  = 1.0 
e1/R, = 0.5, = 1.0 
e,/R1 = 0.5, = - 1.0 
el/Rl = 0-5, = - 1.0 
e1/R, = 0.5, = - 1.0 
e,/Rl = 0.5,  = - 1.0 
€,/al = 0.5, = -1.0 
~,/n, = 0.5, = - 1.0 
BJR, = 0.5, E , / E ~  = - 1.0 
€,/al = 0.5, e1/€2 = - 1.0 

TABLE 2. Moclulation about a non-zero mean (a, = 0) for gap size 6 = 0-444. 

gap approximation using perturbation techniques. He found that as el/Q, -+ 0 with 
y2Q,/el constant, I? = 2, - O(ef/Qf) + O(s!y4/Q2:) + ... . I n  the limit, as y -+ co with 
el/Ql arbitrary, he found i;! to  be less than 2, by order e;/Q;y6. Riley & Laurence 
also solved this problem for the small-gap approximation using the Galerkin method 
coupled with Floquet theory. For small el/Ql their results are in good agreement 
with ours and those of Hall. For larger e1/Q1, however, their results contrast ours. 
A comparison of our results with those of Riley & Laurence are shown in figure 6. 
The discrepancy can again, as in the zero-mean case, be partially explained by the 
fact that approximating D * V + V / p  by D * V in equation (12) is not justified for 
unsteady flows. The error is small for el/Ql < 1 ; but is becoming more pronounced 
for larger e.,/Q,. We studied a few cases without the V / p  term and our results changed 
in the direction of Riley & Laurence. Part of the discrepancy is probably also due to 
their using Cartesian rather than cylindrical operators and therefore neglecting some 
potentially important terms. 

Se-inara & Hall (1976), in commenting on their results, show a functional relation- 
ship between 8 and y which is similar to  the one obtained by Riley & Laurence (see 
figure 6). Since Seminara & Hall use the thin boundary-layer approximation which 
is essentially the same as using Riley & Laurence’s small-gap approximation, it is 
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FIGURE 8. Critical parameter fi = (a, R,d/v) versus frequency y for a, = 0 and 6 = 0.444: 
.Y, eJe2 = 1.0 and el/fil = 0.5; 0 ,  el = 0 and E,/O, = 0.5; t ,  e1/e2 = - 1.0 and eJR1 = 0.6; 
B, e2 = 0 and el/CIl = 0.5. 

reasonable to assume that their results are subject to the same errors as pointed out 
earlier (see appendix for more details). 

Laboratory experiments have been performed by both Donnelly (1964) and 
Thompson (1968). Thompson states that the flow becomes unstable when 

for y + 0 or when a > R, for y + co. This agrees with our findings. Donnelly, on the 
other hand, reported that for cl/Ql < 0.25 and small y ,  B > 8,. His experimental 
criterion for stability was not the absence of vortex motion but the requirement that  
the amplitude of radial perturbations integrated over one period should remain 
constant. Donnelly, however, documented the appearance of ‘transient vortices ’ 
below his critical i? and if the onset of these vortices is taken as the stability limit, our 
results may compare more favourably with his. Similar interpretations of Donnelly’s 
experiments have been offered by Thompson, Hall and Riley & Laurence. 

Figure 8 and table 2 show the results for four cases where 6 = 0.444 and the modu- 
lation amplitude is one half that of the steady-flow angular velocity. We found that 
for outer cylinder modulation (e2/Ql =-0-5, c1 = 0 ) ,  reached a minimum in the 
range of y = 2.0-3.0 and approached R, as y --f co. For y + 0, weak stabilization 
(a > w,) is realized. Modulation of both cylinders in phase (el/Ql = 0.5, e1/e2 = 1.0) 
was found to  be destabilizing for all y with 8 reaching a minimum near y = 2.0 and 
approaching a,, as y -+ 00. Modulation of both cylinders in opposite directions shows 
the most interesting behaviour. B has a local maximum near y = 8.0 and as y -+ 03, 

w 4 A, from above. A local minimum was found near y = 3.0 and another local 
maximum near y = 2-0. In the two cases where both cylinders are modulated, when 
y 3 0, a approaches a finite value less than a, and there is some evidence, although 
inconclusive, that  this value may also be ~ o Q 1 / ( R 1  +el).  

a > fi,Ql/(Ql+t.l) 
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FIGURE 9. Linear stability boundary for different degrees of modulation amplitude, gap size 
8 = 0.0444, RI = R, Rj /v  and R, = R, R: /v :  x , 0 % modulation (steady) ; 0, 10 % modulation 
(c,/fl, = cz/flz = 0.1); *, 25% modulation ( E , / C ~ ~  = cz/n, = 0.25). 

In figure 9 we show the stability boundaries for modulation about a non-zero mean, 
where 52, is not necessarily equal to zero (R, + 0, R, =k 0). As critical parameters 
we use two Reynolds numbers R, = RlR2,/v and R, = f i ,R i / v  and the amplitude 
ratio of modulation to mean rotation is held constant, i.e. sJR, = e2/Rz. The plot 
shows a comparison between 10 and 25% modulation with the stability boundary 
for the steady case. Again we see that modulation in phase is more destabilizing than 
out of phase and that the qualitative behaviour does not change with amplitude. 

4.3. Flows subjected to general three-dimensional disturbances 
( n  + 0, k =k 0) 

At first, as a numerical check, we used our formulation to study the instability of 
steady Taylor flow due to general three-dimensional disturbances. Krueger, Gross & 
Diprima (1966) analytically determined that for the case Rz,/RR, = - 1.0, RJR, = 0.95 
the critical azimuthal wavenumber is n = 4. We examined this case using our formu- 
lation and the critical rotational speeds and axial wavenumbers that we obtained were 
in agreement with theirs. We then extended Krueger et al.'s results to other configur- 
ations of steady basic flows. One such example is shown in figure 10, where we chose 
the gap size 6 = 0.135. The solid line in figure 10 represents the stability boundary 
for n = 0, while the circles represent critical angular velocities obtained for general 
non-axisymmetric disturbances. This configuration has been studied experimentally 
by Coles (1965), who observed a weak helical flow structure near the stability boundary 
for R,/Rl = - 1.0 but described a catastrophic transition to turbulence for decreasing 
values of Q,/R,. Since our results agreed both quantitatively and qualitatively with 
the ones obtained by Coles and Krueger et al., we proceeded with our stability analysis 
of unsteady flows. 
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FIGURE 10. Stability boundary for e2 = el = 0.0 (steady) and gap size 13 = 0.135. The critical 
parameters are: R,  Cl,R!/v. -, Taylor boundary for axisymmetric 
disturbances ; 0, the Krueger mode. 

Cl,R;/v and RI 

165 

The evaluation of critical parameters for unsteady basic flows with arbitrary three- 
dimensional disturbances generally requires a considerable amount of computer time. 
We found that the critical axial wavenumber ac does not change substantially between 
n = 0 and n = 1, and therefore, we evaluated the stability limits for wavenumber 
n = 1,  while setting the axial wavenumber a equal to the critical one found for axi- 
symmetric disturbances. Although this procedure did not yield the critical azimuthal 
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FIGURE 12. Critical parameter 2 = ( e 2 R , d / v )  4 8  versus frequency y for 

Cl1 = R, = E ,  = 0 and gap size 6 = 0.444: x ,  n = 0; 0, n = 1. 
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FIGURE 13. Critical parameter = (elR,tE/v) ,/a versus frequency y for 

R, = 11, = 0, = e2 and gap size 6 = 0.444: x , n = 0 ;  0, n = 1 .  

wavenumber n,,, we did however determine the cases where the three-dimensional 
non-axisymmetric disturbances are more critical than the two-dimensional axi- 
symmetric ones. 

Figures 11-14 and table 3 give a comparison of the stability limits between wave- 
numbers n = 0 and n = I for modulation about a zero mean. For sinusoidal motion 
of the inner cylinder (see figure 11) the stability limit for n = 1 is higher than the one 
for n = 0 for all frequencies and we conclude, therefore, that  the critical disturbances 
are two-dimensional and axisymmetric. Thme results are consistent with Thompson’s 
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7 
FIQURE 14. Critical parameter fi = ( s , R , d / v )  JS versus frequency y for 
R, = R2 = 0, = -c2 and gap size 6 = 0.444: x ,  n = 0 ;  0, n = 1. 

M a tl (n = 0)  R ( n  = 1) 

4 3.12 59.42 61.367 
4 3.18 62.38 64.621 
4 3-40 79.08 82-930 
4 3.82 105.6 110.89 
4 4.34 139.9 145.29 
3 3.57 151.6 151.81 
3 3.08 88.13 88.193 
4 3.13 72-16 71.318 
4 3.29 80-99 77.820 
4 3.74 114.3 108.89 
4 4.35 154-2 146-92 
3 3.37 79-01 78.696 
3 3.10 33.74 33.430 
3 3.12 28.17 27-673 
3 3.12 37.23 35.486 
3 3.22 65.91 60-1 SO 
4 4.10 113.1 103.00 
3 4.21 169.5 179.98 
3 3.41 110-3 118.67 
3 3.64 88.51 90.833 
3 3.82 78.5 I 78.467 
3 4.05 80.45 80.610 
4 4.24 97-29 97.273 

Type 

E2 = 0 
E2 = 0 
E2 = 0 
E2 = 0 
E2 = 0 
El = 0 
El = 0 
El = 0 
El = 0 
El  = 0 
El = 0 
El = €2 

El = E2 

El = E2 

El = €2 
El = E2 

El = E2 

El = - 8 2  

El = - €2 

El = - €2 

El = - €2 

El = - E 2  
El = - €2 

TABLE 3. Comparison of the linear stability limit for n = 0 ws. n = 1 for 
modulation about a zero mean (0, = = 0) and gap size 6 = 0.444. 
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a E (n = 0) R"(n = 1) 

1 .o 
2.0 
3.0 
4.0 
6.0 
7.0 
8.0 

10.0 

3.22 
3.12 
3.13 
3.1 3 
3.09 
3.07 
3.08 
3.10 

45.62 
47-32 
45.05 
47.75 
52.75 
53.92 
54.19 
53.65 

48.758 
63.670 
59.965 
52.728 
50.478 
51.139 
51.838 
5.2.944 

TABLE 4. Comparison of linear stability limit for n = 0 vs. that for n = 1 with 
gap size 6 = 0.444, M = 3, L?, = 0 and cl/Q1 = -e2/Rl = 0.5. 

75 L 
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FIGURE 15. Critical parameter a = (R,R,d/v) 46 versus frequency y for 
R 2 -  - 0, el/Rl = -e2/R, = 0.6 and gap size 6 = 0.444: x ,  n = 1; 0, n = 0. 

7 

( 1968), who observed only axisymmetric secondary motion in his experimental work. 
For modulation of the outer cylinder (see figure 12), the results differ. At low frequen- 
cies, the critical disturbances are axisymmetric; however, near y = 2.0 the stability 
limit for n = 1 falls below the limit for n = 0 and remains so for higher frequencies. 
For modulation of both cylinders in phase (see figure 13) we found that the n = 1 
curve falls below the n = 0 curve for all frequencies studied and the difference widens 
with y increasing. For both cylinders oscillating in opposite directions (see figure 14) 
the critical disturbances remain axisymmetric until y = 5.0 is reached. 

Table 4 and figure 15 give a comparison of the stability limits for n = 0 and n = 1 
for a non-zero-mean modulation, where c1/& = -c2/Q, = 0.5 and Q, = 0. At low 
frequencies the n = 1 limit is considerable higher than for the n = 0 curve; however, 
for y > 5.0 the response is no longer axisymmetric. The results for this case clearly 
indicate that the possibility of stabilization at higher frequencies only occurs in the 
axisymmetric case and is eliminated when three-dimensional disturbances are 
considered. 
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The case e2/E1 = - 1.0, Q, = Ql = 0, S = 0.444, and y = 5.0 was studied in greater 
detail. For n = 1 we found a, = 4.1 and fi = 97.201. For n = 2, a, dropped to  3.0 
and fi to 86.985. This seems to indicate a trend toward a purely azimuthal mode. 
Modulation of the outer cylinder only (s2 =/= 0, el = SZl = SZ, = 0) was also studied in 
greater detail for higher values of n. For the case with y = 2.0, we found that for 
n = 3, a,+ 0 with a = 55.764; however, we had to  use a Galerkin order M = 6 to 
obtain this result. When evaluating the stability limit for higher values of n, an even 
higher approximation order M was required. This hindered the search for n,, since 
the evaluation of coefficients for matrix D in (22) becomes very expensive. A similar 
phenomenon was observed in the steady case shown in figure 10. We found that for 
increasingly negative values of Q2/Q,, n, increases, and as our stability-limit search 
proceeds for higher values of n, the value of M required for convergence increases 
simultaneously. These results strongly point toward the possibility of inducing in- 
stability by a predominately outer-cylinder rotation through a purely azimuthal mode 
in both the steady and unsteady cases. This assertion can only be proved, however, 
after making our numerical scheme more efficient in order to reduce the prohibitive 
cost of computer time now required. 

5. Conclusions 
The small-gap approximation, which would have reduced this problem to a simpler 

Cartesian geometry, was not used a t  any time in this work. In  this approximation one 
neglects all terms containing r (or /3 in non-dimensional units) in the denominator, 
since they are assumed to be of order S (the non-dimensional gap size). The small-gap 
approximation used quite extensively by other investigators has been found to render 
rather good results for the steady Taylor-flow configuration. When considering un- 
steady flows, however, one must show that a term is indeed small for all time before 
i t  can be neglected. A striking example where the small-gap approximation is not valid 
for our problem is demonstrated in figure 4 where we show that the term V//3  cannot 
be disregarded. By retaining these terms in the formulation, thus not restricting our- 
selves to cases where S is small, we can extend the scope of our investigation to  gaps 
of finite length with their many envisioned physical applications. 

The first results presented were the linear stability bounds for both zero-mean and 
non-zero-mean flows, subject to  axisymrnetric disturbances (n  = 0, k 9 0). We com- 
pare our results with those of Thompson (1968) and Riley & Laurence (1976) for 
modulation of the inner cylinder about a zero mean (see figure 3). Thompson performed 
extensive laboratory experiments and in addition calculated a few points theoretically 
using finite differences. Our results are in good agreement with his. Unlike Thompson, 
Riley & Laurence used the small-gap approximation and reported some rather 
peculiar behaviour. For the stability limit a they reported a derivative discontinuity 
along with a jump discontinuity for the critical wavenumber a, at  y = 1.5. In  addition, 
their stzbility boundary was higher than ours or Thompson’s. For non-zero-mean 
modulation of the inner cylinder, we found that at low frequencies, approaches 
a,, Q,/(Ql +e l )  while as y --f co, it asymptotically approaches the limit for the steady 
mean flow a,. Stabilization was not found a t  any frequency or modulation amplitude 
and a was shown to be independent of the amplitude ratio el/Q,. This again contrasts 
the findings of Riley & Laurence and can again be attributed to their usage of the 
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narrow-gap approach (see the appendix), Sinusoidal motion of the outer cylinder was 
also considered and we found that 2 approaches co for y -+ 0 or y -+ co, while it reaches 
a minimum near y = 2-0. Here the fluid seems to  be a t  resonance, which is, however, 
damped by viscosity. This result contradicts the one obtained for steady rotation of 
the outer cylinder, which is always stable. Modulation of both cylinders in phase and 
out of phase was shown to have similar behaviour with el = e2 being the most de- 
stabilizing. Half-frequency response was found only for small y and when motion of 
the outer cylinder was involved, 

For non-zero-mean modulation, stabilization was found to be possible only for 
cases with e2 $. 0. I n  summary, for the axisymmetric case, we can conclude that the 
effect of modulation is most noticeable for small y and then decreases in importance 
as y-+co. 

In  the general three-dimensional non-axisymmetric case (n $, 0, k + 0) for modu- 
lation of the inner cylinder only, we determined that axisymmetric disturbances 
(n = 0, k $. 0) are the critical ones. This is consistent with the experimental data 
obtained by Thompson. When the outer cylinder is modulated (with or without the 
inner cylinder) we found that as y increases, non-axisymmetric disturbances become 
the critical ones. This gives us an insight into the mechanism of instability. For steady 
or sinusoidal motion of the inner cylinder (e2 = Q2 = 0), the instability is dominated 
by centrifugal effects of the type mentioned by Rayleigh (1920) for the inviscid case 
(an adverse distribution of angular momentum). Modulation of the outer cylinder 
a t  low frequencies exhibits the same type of adverse angular-momentum distribution 
as for inner-cylinder motion. As y increases, however, the shear effects become im- 
portant and the secondary flow acquires a wave component in the azimuthal direction. 
Whether any purely azimuthal modes (n  4 0, k = 0) exist or whether there is a sudden 
transition to turbulence are still open questions. I n  the non-zero-mean case 

(cl/Cl1 = -c2/Ql = 0-5 and Q2 = 0) 

we can conclude that the possible stabilization at higher frequencies found in the 
axisymmetric case will not occur in the three-dimensional non-axisymmetric case. 

A major portion of this work comprises part of the doctoral thesis of J. I .  
Tustaniwskyj. This work was supported by the U.S. Army Research Office. 

Appendix 
I n  table 5 we present some numerical checks on our stability limit search for the 

unsteady Taylor flow. We chose to discuss the zero-mean modulation of the inner 
cylinder as an example. The first entries in table 5 show the stability limit a and 
critical wavenumber a, calculated for y = 1-4 and with Galerkin order M varying 
from 2 to 6. From this we see that our solution has essentially converged upto three 
significant figures for M = 3. I n  this paper we assumed convergence as a guideline, 
when the Taylor number fi for M was within 2 yo of the one obtained for M + 1.  The 
next few entries are stability limits calculated for y = 1.6. These calculations were 
made with M = 2, 4 arid 6 for the purpose of finding out whether or not any dis- 
continuities in the critical wavenumber a, exist, as reported by Riley & Laurence in 
their earlier study. We found no such discontinuity for the small gap 6 = 0.0444. 
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Y 
1 *4 
1.4 
1.4 
1.4 
1.4 
1.6 
1.6 
1.6 
1.5 
1.5 
1.5 
1.5 
1.4 
1.6 

M a, R s 
2 
3 
4 
5 
6 
2 
4 
6 
4 
4 
4 
4 
4 
4 

3.106 
3.123 
3.123 
3.124 
3.124 
3.114 
3.132 
3- 134 
3.127 
3-126 
3.126 
3.126 
3.122 
3.131 

47.883 617 9 
47.605 7284 
47,602 232 7 
47.587 689 9 
47.587 5602 
48.552 378 7 
48.263 956 1 
48.248 552 8 
47.864 194 6 
46-929 4205 
46.686 659 1 
46.6624166 
46.394 361 5 
47.068 315 6 

0.0444 
0.0444 
0.0444 
0.0444 
0.0444 
0.0444 
0.0444 
0.0444 
0-0444 
0-0100 
0~0010 
0~0001 
0~0001 
0~0001 

TABLE 5. Numerical checks of' the stability search algorithm. 

Next we evaluated a, and w for y = 1.5, M = 4 for a decreasing sequence of small 
gaps S = 0~0444,0~0100,0-0010 and 0.0001. These results show no evidence of a quali- 
tative change in behaviour for a, or 2 as a function of y as S 4 0. As a final check, 
we bracketed the point where Riley & Laurence reported a discontinuity ( y  = 1-5) 
and for a very small gap (6 = 0.0001) found a, to be indeed a continuous function of y.  
Other checks were also performed but for the sake of brevity will not be presented here. 
From these results, we concluded that Riley & Laurence's findings contrasted ours, 
mainly because they used an approximation which is not always justified for unst,eady 
circular Couette flow. 
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